Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Front Immunol ; 13: 1049458, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2236273

RESUMEN

Introduction: A key feature of the COVID-19 pandemic has been the emergence of SARS-CoV-2 variants with different transmission characteristics. However, when a novel variant arrives in a host population, it will not necessarily lead to many cases. Instead, it may fade out, due to stochastic effects and the level of immunity in the population. Immunity against novel SARS-CoV-2 variants may be influenced by prior exposures to related viruses, such as other SARS-CoV-2 variants and seasonal coronaviruses, and the level of cross-reactive immunity conferred by those exposures. Methods: Here, we investigate the impact of cross-reactive immunity on the emergence of SARS-CoV-2 variants in a simplified scenario in which a novel SARS-CoV-2 variant is introduced after an antigenically related virus has spread in the population. We use mathematical modelling to explore the risk that the novel variant invades the population and causes a large number of cases, as opposed to fading out with few cases. Results: We find that, if cross-reactive immunity is complete (i.e. someone infected by the previously circulating virus is not susceptible to the novel variant), the novel variant must be more transmissible than the previous virus to invade the population. However, in a more realistic scenario in which cross-reactive immunity is partial, we show that it is possible for novel variants to invade, even if they are less transmissible than previously circulating viruses. This is because partial cross-reactive immunity effectively increases the pool of susceptible hosts that are available to the novel variant compared to complete cross-reactive immunity. Furthermore, if previous infection with the antigenically related virus assists the establishment of infection with the novel variant, as has been proposed following some experimental studies, then even variants with very limited transmissibility are able to invade the host population. Discussion: Our results highlight that fast assessment of the level of cross-reactive immunity conferred by related viruses against novel SARS-CoV-2 variants is an essential component of novel variant risk assessments.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , Reacciones Cruzadas
3.
PLoS Pathog ; 17(9): e1009804, 2021 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1416909

RESUMEN

Prior studies have demonstrated that immunologic dysfunction underpins severe illness in COVID-19 patients, but have lacked an in-depth analysis of the immunologic drivers of death in the most critically ill patients. We performed immunophenotyping of viral antigen-specific and unconventional T cell responses, neutralizing antibodies, and serum proteins in critically ill patients with SARS-CoV-2 infection, using influenza infection, SARS-CoV-2-convalescent health care workers, and healthy adults as controls. We identify mucosal-associated invariant T (MAIT) cell activation as an independent and significant predictor of death in COVID-19 (HR = 5.92, 95% CI = 2.49-14.1). MAIT cell activation correlates with several other mortality-associated immunologic measures including broad activation of CD8+ T cells and non-Vδ2 γδT cells, and elevated levels of cytokines and chemokines, including GM-CSF, CXCL10, CCL2, and IL-6. MAIT cell activation is also a predictor of disease severity in influenza (ECMO/death HR = 4.43, 95% CI = 1.08-18.2). Single-cell RNA-sequencing reveals a shift from focused IFNα-driven signals in COVID-19 ICU patients who survive to broad pro-inflammatory responses in fatal COVID-19 -a feature not observed in severe influenza. We conclude that fatal COVID-19 infection is driven by uncoordinated inflammatory responses that drive a hierarchy of T cell activation, elements of which can serve as prognostic indicators and potential targets for immune intervention.


Asunto(s)
COVID-19/inmunología , COVID-19/mortalidad , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antígenos CD/inmunología , Antígenos de Diferenciación de Linfocitos T/inmunología , Linfocitos B/inmunología , Biomarcadores/sangre , Proteínas Sanguíneas/metabolismo , Estudios de Cohortes , Enfermedad Crítica/mortalidad , Femenino , Humanos , Inmunofenotipificación , Gripe Humana/inmunología , Lectinas Tipo C/inmunología , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Células T Invariantes Asociadas a Mucosa/inmunología , Gravedad del Paciente
4.
Cell Rep ; 35(3): 109020, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: covidwho-1182447

RESUMEN

COVID-19, caused by the novel coronavirus SARS-CoV-2, is a global health issue with more than 2 million fatalities to date. Viral replication is shaped by the cellular microenvironment, and one important factor to consider is oxygen tension, in which hypoxia inducible factor (HIF) regulates transcriptional responses to hypoxia. SARS-CoV-2 primarily infects cells of the respiratory tract, entering via its spike glycoprotein binding to angiotensin-converting enzyme 2 (ACE2). We demonstrate that hypoxia and the HIF prolyl hydroxylase inhibitor Roxadustat reduce ACE2 expression and inhibit SARS-CoV-2 entry and replication in lung epithelial cells via an HIF-1α-dependent pathway. Hypoxia and Roxadustat inhibit SARS-CoV-2 RNA replication, showing that post-entry steps in the viral life cycle are oxygen sensitive. This study highlights the importance of HIF signaling in regulating multiple aspects of SARS-CoV-2 infection and raises the potential use of HIF prolyl hydroxylase inhibitors in the prevention or treatment of COVID-19.


Asunto(s)
COVID-19/metabolismo , Células Epiteliales/metabolismo , Glicina/análogos & derivados , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Isoquinolinas/farmacología , Pulmón/metabolismo , SARS-CoV-2/fisiología , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Células A549 , Animales , COVID-19/patología , Células CACO-2 , Hipoxia de la Célula/efectos de los fármacos , Chlorocebus aethiops , Células Epiteliales/virología , Glicina/farmacología , Humanos , Pulmón/virología , Ratones , Células Vero , Tratamiento Farmacológico de COVID-19
5.
Euro Surveill ; 25(42)2020 10.
Artículo en Inglés | MEDLINE | ID: covidwho-886128

RESUMEN

BackgroundThe progression and geographical distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the United Kingdom (UK) and elsewhere is unknown because typically only symptomatic individuals are diagnosed. We performed a serological study of blood donors in Scotland in the spring of 2020 to detect neutralising antibodies to SARS-CoV-2 as a marker of past infection and epidemic progression.AimOur objective was to determine if sera from blood bank donors can be used to track the emergence and progression of the SARS-CoV-2 epidemic.MethodsA pseudotyped SARS-CoV-2 virus microneutralisation assay was used to detect neutralising antibodies to SARS-CoV-2. The study comprised samples from 3,500 blood donors collected in Scotland between 17 March and 18 May 2020. Controls were collected from 100 donors in Scotland during 2019.ResultsAll samples collected on 17 March 2020 (n = 500) were negative in the pseudotyped SARS-CoV-2 virus microneutralisation assay. Neutralising antibodies were detected in six of 500 donors from 23 to 26 March. The number of samples containing neutralising antibodies did not significantly rise after 5-6 April until the end of the study on 18 May. We found that infections were concentrated in certain postcodes, indicating that outbreaks of infection were extremely localised. In contrast, other areas remained comparatively untouched by the epidemic.ConclusionAlthough blood donors are not representative of the overall population, we demonstrated that serosurveys of blood banks can serve as a useful tool for tracking the emergence and progression of an epidemic such as the SARS-CoV-2 outbreak.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Betacoronavirus/inmunología , Donantes de Sangre , Infecciones por Coronavirus/epidemiología , Pandemias , Neumonía Viral/epidemiología , Vigilancia de la Población , Adulto , COVID-19 , Análisis por Conglomerados , Infecciones por Coronavirus/sangre , Ensayo de Inmunoadsorción Enzimática , Femenino , Geografía Médica , Humanos , Concentración 50 Inhibidora , Masculino , Modelos Inmunológicos , Pruebas de Neutralización , Neumonía Viral/sangre , Prevalencia , SARS-CoV-2 , Escocia/epidemiología , Sensibilidad y Especificidad , Estudios Seroepidemiológicos , Población Urbana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA